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• 8:45-9:00 Setup access to NERSC Aster 

• 9:00-10:00 Introduction to Aster system structure 

• 10:00-11:00 Basic Aster Data Usage 

• 11:00-12:00 Best practice to manage your data in Aster 

• 12:00-13:00 Working Lunch, Hand-on Session 

• 13:00-14:00 Introduction to nCluster 

• 14:00-15:00 Introduction to SQL-MapReduce 

• 15:00-17:00 Hand on session and Q&A 
 

Agenda 



Architecture Overview 
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nCluster Architecture 

Architectural Highlights: 

 

• Cluster of tens to hundreds of 
commodity hardware boxes 
managed as a single database. 
 

 

• 4 independent (share nothing) 
tiers for management, query 
processing, loading, & backup. 

 

 

• In-database SQL-MapReduce 
enables parallelization of query 
and analytics processing. 

Queries/Answers 

Queen 

Reports, Analytics, Applications 
(SQL / ODBC / JDBC / OleDB) 

Queries 

Data 

Worker Nodes 

Loader Nodes 

Aster nCluster Database 
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The nCluster Approach: MPP Analytic Platform 

• Built for: 
 

- Data growth: 
• MPP architecture, simple scale-out 
 

- Faster loading: 
• Parallelized loader nodes 
 

- Agile analytics, in-database: 
• SQL/MR framework 
 

- SQL support: 
• SQL/JDBC/ODBC/OleDB interfaces 
 

- Availability:  
• Built-in data replication 
 

- Low cost: 
• Runs on a cluster of x86 servers & 

GigE/10GigE networks. 

Queries/Answers 

Queen 

Reports, Analytics, Applications 
(SQL / ODBC / JDBC / OleDB) 

Queries 

Data 

Worker Nodes 

Loader Nodes 

Aster nCluster Database 
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The nCluster Approach: Designed for Big Data 

• nCluster is optimized for dimensional models (star schemas). 

- Native support for distributed and replicated tables enables 
optimal performance for joins and complex workloads. 

 

• Performance goal is to maximize local computation. 

- nCluster‟s push-down optimizations delegate to workers. 

 

• Proper star schema modeling enables nCluster to optimize 
performance. 

- There‟s no need to model specifically for nCluster, but 
physical partitioning and logical partitioning settings enable 
you to improve performance. 
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nCluster: The Queen 

• Queen 
 

- Manages system, configurations, 
schema, and error handling. 

 

- Presents query interface, 
SQL/ODBC/JDBC/OleDB             
“The Face of nCluster” 

 

- Global query optimizer 
coordinates queries in 3 steps: 

– Parses SQL statements and hands off 

to Planner 

– Planner develops a set of sub-queries 

to be executed 

– Executor will execute sub-queries 

and aggregate results 

Queries/Answers 

Queen 

Reports, Analytics, Applications 
(SQL / ODBC / JDBC / OleDB) 

Queries 

Data 

Worker Nodes 

Loader Nodes 

Aster nCluster Database 
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Network-Optimized Query Planning 

• Translate query into phases 

• Send work to nodes that contain the data 

• Reduce data fully before sending across the network 

Global Optimizer 

vWorker 
Optimiz
er 

vWorker 
Optimiz
er 

vWorker 
Optimiz
er 

vWorker 
Optimiz
er 

vWorker 
Optimiz
er 

Maximize local computation to minimize network data flow 

Independent optimization at global and local level maximizes performance 
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nCluster: Worker Nodes 

• Worker Node 
 

 

- Stores data and interacts with 
the queen and other workers. 

 

- Executes queen‟s orders: 

• Run queries 

• Replicate 

• Balance storage 

• Balance processing 

 

- Local query optimizer 

 

Queries/Answers 

Queen 

Reports, Analytics, Applications 
(SQL / ODBC / JDBC / OleDB) 

Queries 

Data 

Worker Nodes 

Loader Nodes 

Aster nCluster Database 
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nCluster: Loader Nodes 

• Loader Node 
 

- Receives new data from bulk 
loading clients (for example, 
nCluster_loader, 
Informatica, similar tools) 

 

- Partitions this data into 
appropriate segments 

 

- Distributes the segmented 
data across vworkers 

Queries/Answers 

Queen 

Reports, Analytics, Applications 
(SQL / ODBC / JDBC / OleDB) 

Queries 

Data 

Worker Nodes 

Loader Nodes 

Aster nCluster Database 
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Understanding Row and Column Storage 

Hybrid row and column ensures performance with analytic breadth  

Row Store 

 

Column Store 

Row Store 
PageviewsTable 

userid ip ts domain page qs ref 
domain 

… 

Column Store 
Pageviews table 

userid ip ts domain 

projection1 

… 

projection2 projection3 projection4 
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http://developer.teradata.com/database/articles/introducing-
aster-express 

 

 

Where to get a VMWare version of Aster ? 

http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express
http://developer.teradata.com/database/articles/introducing-aster-express


Database Objects 
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Creating a Distributed table- Syntax 

CREATE TABLE AdEventFact ( 

    UserID   BIGINT  NOT NULL, 

    AdID              BIGINT   NOT NULL, 

    CampaignID        INTEGER  NOT NULL, 

    PageViewID        BIGINT  NOT NULL, 

    CookieID          VARCHAR(20), 

    IpAddr            CHAR(20) NOT NULL, 

    EventTimeStamp   TIMESTAMP NOT NULL, 

    EventType         CHAR(10), 

    Page              VARCHAR(100), 

    DomainID          BIGINT  NOT NULL 

) 

DISTRIBUTE BY HASH (UserID) 

STORAGE ROW|COLUMN 

; FACT tables must 
declare DISTRIBUTE 
BY HASH (col_name) 
clause. 

The column list 
begins and ends 
with parenthesis. 
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Creating a Replicated Table - Syntax 

CREATE TABLE DimAd( 

    AdID            BIGINT  NOT NULL, 

    AdName      VARCHAR(30) NOT NULL, 

    AdDescription  VARCHAR(100)     NOT NULL, 

    AdType          CHAR(10)  NOT NULL, 

    AdText           TEXT, 

    AdWidth         INTEGER, 

    AdHeight        INTEGER, 

    AdStatus        CHAR(10), 

    CONSTRAINT DimAdPK PRIMARY KEY (AdID) 

) 

DISTRIBUTE BY REPLICATION 

STORAGE ROW|COLUMN 

; 

 

Dimension tables 
often implement 
PRIMARY KEYs for 
uniqueness. 

Note, there is no Distribution KEY 
declaration for Replicated tables. 
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Multi-Level Partitioning Syntax Example 

Confidential and proprietary. Copyright © 2009 Aster Data Systems  

CREATE TABLE sales 

 ( sales_order_id  int  NOT NULL 

 , customer_id  int  NOT NULL 

 , cust_state  char(2) 

 , region    char(1) 

 , amount  int 

 , sales_date  date) 

  DISTRIBUTE BY HASH (sales_order_id )    -- Physical Partitioning 

  PARTITION BY RANGE (sales_date )      -- Logical Partitioning 

    (partition sales_old           (END „2010-07-01‟::date)   --    old sales  

    ,partition sales_2010_07  (END „2010-08-01‟ ::date   --    January 2010 sales 

       PARTITION BY LIST (region)     --       Logical child partition 

  (partition east  (VALUES („E‟)     --          east division 

    ,partition west (VALUES („W‟)) )    --          west division 

    ,partition sales_2010_08  (END „2010-09-01‟ ::date   --    February 2010 sales 

       PARTITION BY LIST (region)     --       Logical child partition 

  (partition east  (VALUES („E‟)    --          east division 

    ,partition west (VALUES („W‟)) )   --          west division 

    ,partition sales_2010_09  (END „2010-10-01‟ ::date)   --    March 2010 sales 

    ,partition sales_future      (END „3999-01-01‟ ::date)       --    future dated sales 

  ); 



SQL/MR Overview 
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- Databases have long been data analysis engines 

• For reporting on structured data 

 

- SQL is high-level, easy-to-iterate 

• Works on any schema 

 

- SQL can be scaled to large amounts of data 

• Data warehouses with petabytes well-established 

 

- Databases are well connected to IT infrastructure 

• Standardized Interfaces 

 

 

Databases for Big Data? 
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- Relational Databases not suited to Multi-structured Data 

• Big Data structure often unknown prior to exploration 

• Don‟t want to hold up Big Data loading for parsing 

 

- SQL is a poor match for some problems 

• Some queries cumbersome, non-intuitive, or impossible to express 

• Query optimizers can make poor choices leading to poor performance 

 

- Traditional user-defined functions (UDFs) an incomplete fix 

• Scalar, aggregate functions of limited expressiveness 

• Table functions not designed for parallelism 

• Fixed schema limits reusability 

Shortcomings of Databases 
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- MapReduce scales processing to huge data volumes 

• Deployed on a large scale at several well-known Internet companies 

• Overcomes scale and expressiveness problems of traditional DBMSs 

 

- Excellent programming model 

• Simple to understand 

• Structured to facilitate parallelization 

• Implemented in many languages 

 

The MapReduce Movement 
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WordCount Application Design with MapReduce 
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- But, MapReduce is heavily oriented to coding 

• New question frequently means new code 

• Harder to iterate 

 

- Lost the declarative, reusable functionality of SQL 

• Data model: schema, statistics, locality optimization 

• General-purpose algorithms: joins, grouping, sorting 

 

 

 

 

- Why can‟t we combine the best of Database and MapReduce 
to create a declarative, reusable, and scalable analysis tool? 

Shortcomings of MapReduce 
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 Scalable 
 It should be easy to leverage hardware resources of 100‟s of servers 

 Fault-tolerance should be handled by the system 

 

 Analyst-friendly 
  Want flexible, declarative language for analysts 

  Enable developers to create widely-reusable tools for analysts 

  Semantics of queries not mixed up with implementation details 

 

 Developer-friendly 
  Want straightforward programming model 

  Provide useful platform services to developer to maximize freedom 

SQL-MR: Design Goals 
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SQL-MapReduce®: What Is It? 
 

• Aster Data’s patented database implementation of the 
standard MapReduce framework for advanced analytics 

- Examples: time-series, path and pattern analysis, graph analysis, 
market basket, decision trees, cluster analysis, data transformation 

 

• Architected for Optimal Big Data Analytics Execution 

- Supports both batch and interactive queries executed in parallel 

- Maps sub-logic to multiple nodes and then combines/reduces results 

- Provides single process for executing both SQL and MapReduce logic 

 

• Easy to Use: Combines Standard SQL and MapReduce  

- Delivers power of MapReduce through SQL and any SQL-based tool 

- Does not require a Hadoop implementation 
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SQL-MapReduce®: What Does It Do? 
 

SQL-MR enables the execution of user code within nCluster: 

 

 User code is first installed throughout the cluster,  

   then it‟s invoked on database data through SQL. 

 

 Execution is automatically parallelized across cluster. 

 

 Supports Java and C as primary languages, but other 
programming languages (C++, C#. Perl, Python, R) 
are supported through the Streaming interface. 



SQL-MR Invocation 
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    f() 

 

Basic Primitive: SQL-MR Function 

ARGS 

Data Set #1 

Data Set #2 

    f() 
    f() 
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 Self-describing, parallelized, relation-to-relation transform 
 

 Operates on an input relation 
 Input relation (table, sub-query, etc.) specified by query 

 By default, allow any input schema; function can reject 

 Input rows can be accessed row-wise or partition-wise 

 

 Emits an output relation 
 Function can be used in query like any relation; joined, aggregated, etc. 

 

 Free-form transformation 
 Output schema chosen by function; based on input schema,  

    argument clauses, external considerations, etc. 

 No enforced relationship between rows in input and output 

Basic Primitive: SQL-MR Function 
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• RowFunction 

 Corresponds to a map function. 

 Must implement the operateOnSomeRows method. 

 Must be invoked without a PARTITION BY. 

 “Sees” all the appropriate rows on a particular worker. 

 

 

• PartitionFunction 

 Corresponds to a reduce function. 

 Must implement the operateOnPartition method. 

 Must be invoked with a PARTITION BY, to specify how rows are reshuffled. 

 “Sees” all the appropriate rows in a partition. 

 

 

Types of SQL-MR Functions 
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SELECT * FROM  

      IPGEO ( 

           on webclicks 

           ip_address_col(„ip_address‟) 

     ) 

; 

 

Input (webclicks): 

172.18.58.54 | user_id1 | 2012-01-01 23:33:30 

 

Output: 

172.18.58.54 | USA | California | San Jose | user_id1 | 2012-.. 

Example RowFunction Invocation (Map) 
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- Each row function task sees some subset of rows 
• The framework is free to schedule tasks to rows in any way 

• Data movement is not required. Think 1 -> N, N >= 1 

Parallelism – Row Functions 

Row function task 

Row function task 

Row function task 

…
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SELECT * FROM  

      sessionize( 

           on webclicks 

           partition by user_id  

           order by timestamp 

           timecolumn(„timestamp‟) session_timeout(30) 

     ) 

; 

Input (webclicks): 
172.18.58.54 | user_id1 | 2012-01-01 23:33:30 

172.18.58.54 | user_id1 | 2012-01-01 23:45:30 

 

Output: 
172.18.58.54 | user_id1 | 2012-01-01 23:33:30 | 1 

172.18.58.54 | user_id1 | 2012-01-01 23:45:30 | 1 

 

Example PartitionFunction Invocation (Reduce) 
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- Each partition function task sees a group of rows 
• Rows in group share a common value of the PARTITION BY expression 

• The framework forms groups (shuffling across nodes, only if needed). Think N -> 
M, M >= 0  

Parallelism – Partition Functions 

Partition function task 

Partition function task 

…
 

Partition function task 
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Functions integrated into SQL queries 

 

SELECT ... 

FROM functionname( 

      ON table-or-query 

[PARTITION BY expr... ] 

      [ ORDER BY expr... ] 

      [ clausename ( arg... ) ]... 

 (      

... 

SQL Integration 
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- SQL-MR also provides a variety of platform services 

• Services automatically managed by framework 

• Provides maximum freedom to developers 
 

- Out-of-process execution 

• Function inputs and outputs are streamed, enabling high bandwidth 

• Bugs, crashes are isolated from database kernel processes 
 

- Can use arbitrary external libraries, run arbitrary processes 

• Entire process group managed by framework 

• Security, scheduling, etc. managed at process level 

• Does not rely on support from any particular runtime 
 

- Clean exception handling 

• If exception is ClientVisibleException then the user gets message 

• A full stack trace of the exception can be viewed through the AMC 

SQL-MR Platform Features 



An Example SQL-MR Function 



Confidential and proprietary. Copyright © 2011 Teradata Corporation. 37 

 Goal: find frequencies of words in a set of documents 
 

 Input data set:  
 Documents (docid int, body text) 
 

Word Count in Map/Reduce 

docid body 

1 „Jack and Jill went up the hill to fetch a pail 
of water. Jack fell down and broke his 
crown, and Jill came tumbling after.‟ 

2 „Little Miss Muffet sat on a tuffet, eating her 
curds and whey. Along came a spider, who 
sat down beside her, and frightened Miss 
Muffet away!‟ 

3 „The itsy bitsy spider went up the water 
spout. Down came the ran and washed the 
spider out. Out came the sun, and dried up 
all the rain. And the itsy bitsy spider went 
up the spout again.‟ 

word count 

went 3 

hill 1 

up 4 

down 3 

spider 4 

tuffet 1 

… 

 Output data set: 
 Count_tokens (word, count) 
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BEGIN; 
 

CREATE FACT TABLE documents ( 

    docid int,  

    body text, 

) DISTRIBUTE BY HASH(docid); 
 

INSERTINTOdocumentsVALUES,0)‘thisisasingletest

document. it is simple to count the words in this single 

documentbyhand.doweneedacluster?’); 
 

END; 
 

SELECT body FROM documents; 

 

 

Input: The Documents Table 
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BEGIN; 

 

\install tokenize.jar 

\install count_tokens.jar 

 

SELECT word, count  

 FROM  

        count_tokens ( 

            ON (  

          SELECT word, count 

          FROM tokenize( 

                         ON documents) 

             ) 

       PARTITION BY word 

) ORDER BY word DESC; 

 

ABORT; 

 

Invoking the Functions 
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BEGIN; 
 

\install tokenize.jar 
 

SELECT word, sum(count) 

    FROM tokenize(ON documents) 

GROUP BY word 

ORDER BY word; 
 

ABORT; 

 

 

Even Better: Forget the Reduce 

Use SQL, Map and Reduce functions as tools that 
you can string together in any way to do the job.  



nPath and usecases 
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• Business Question 

- How many distinct users start on a home page, click on an auction, 
view the seller‟s profile, and then bid on the item? 

 

• Input Data 

- clicks table (userId, timeOfAction, actionType, …) 

- actionType is an enum of {visitHome, viewAuction,            
placeBid, searchItem, viewProfile, …} 

Analyzing a Clickstream Logs Table 



Confidential and proprietary. Copyright © 2011 Teradata Corporation. 43 

SELECT count(distinct userId) 

FROM nPath( 

ON clicks 

PARTITION BY userId 

ORDER BY timeOfAction 

MODE(NONOVERLAPPING) 

PATTERN(„H.A.P.B‟) 

SYMBOLS( 

actionType = „visitHome‟ AS H, 

actionType = „viewAuction‟ AS A, 

actionType = „viewProfile‟ AS P, 

actionType = „placeBid‟ AS B 

) 

RESULT(first(userId of H) as userId) 

); 

The nPath Query for a Specified Path 
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• Partition the source data into groups 

 

• Order each group to form a sequence 

 

• Match subsequences of interest 

- Define a set of symbols via predicates 

- Define the subsequences of interest  

via a regular expression of symbols 

 

• Compute aggregates over each matching subsequence 

The Four nPath Steps 



Confidential and proprietary. Copyright © 2011 Teradata Corporation. 45 

• Knowing the most common paths that users take 
through a website helps answer these questions: 
 

- How are users traversing the site? 
 

- Where should we focus our site design efforts? 
 

- Are premature exits occurring?  Where? 
 

- What‟s the „Golden Path‟ (primary patch to $$)? 
 

- How many users are following the golden path? 
 

- Are there equally profitable alternatives paths to $$? 

Path Aggregation Questions and Answers 
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SELECT path, count(*) as freq 

FROM NPATH ( 

ON page_event_fact 

PARTITION BY session_key 

ORDER BY page_event_timestamp 

MODE (OVERLAPPING) 

PATTERN ('^A.B*$') 

SYMBOLS ( 

page_key = 1 AS A, TRUE AS B  

) 

RESULT( ACCUMULATE(page_key OF B) AS path ) 

) T 

GROUP BY path 

ORDER BY freq DESC LIMIT 10; 

 

The Accumulate function will returns a string, containing 
the sequence of page event keys, like this: “2:5:10:32…” 

nPath Query to Find the Top 10 Common Paths 
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• Page dwell time duration analysis 

- Dwell is the elapsed duration between when the user views a 
page and when the user moves on to view a subsequent page. 

 

• In an opt-in scenario… 

- A low page dwell time may be desirable. The longer visitors are 
“distracted” from the event, the more likely they will abandon. 

 

• For pages with educational information… 

- A longer page dwell time is desirable. The longer people view 
content, the more likely they thoroughly absorb the material. 

Page Dwell Analysis 
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Question: Find the Average Page Dwell, in seconds, for all Pages 

 

SELECT avg( b_time - a_time) as Avg_Page_Dwell 

FROM npath ( 

ON (select * from page_event_fact where user_id = 2123) 

PARTITION by session_key 

ORDER by page_event_timestamp 

MODE (OVERLAPPING) 

PATTERN ('A.B') 

SYMBOLS (true as A, true as B ) 

RESULT ( LAST(page_event_timestamp of B) as b_time, 

FIRST(page_event_timestamp of A) as a_time) 

) T 

; 

nPath Query for Page Dwell Time Analysis 
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• Loan transactions table: 

 
 customer | eventtimestamp |   eventtype   | amount 

----------+----------------+---------------+-------- 

 qi       | 2011-01-01     | payment       |    100 

 qi       | 2011-02-10     | latepayment   |    100 

 qi       | 2011-03-01     | payment       |    200 

 qi       | 2011-03-15     | CLI           | 

 qi       | 2011-04-01     | payment       |     95 

 qi       | 2011-05-01     | payment       |    107 

 qi       | 2011-06-15     | missedpayment | 

 qi       | 2011-07-15     | missedpayment | 

 

• Find sequence of credit line increase request (CLI) followed 
eventually by default (2 or more consecutive missedpayment). 
Find the customer and the latency from CLI to defaults. 

Usecase: Credit Line Increase to Default 
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SELECT *, default_ts - cli_ts as cli_to_default_latency 

FROM npath ( ON loan_transactions  

 partition by customer 

 order by eventtimestamp 

 mode(nonoverlapping) 

 pattern('CLI.X*.DEFT{2}') 

 symbols(eventtype='CLI' as CLI, true as X,  

  eventtype='missedpayment' as DEFT ) 

 result( first(customer of CLI) as customer, 

  first(eventtimestamp of CLI) as CLI_ts, 

  last(eventtimestamp of DEFT) as default_ts ) 

); 

 

 

 customer |   cli_ts   | default_ts | cli_to_default_latency 

----------+------------+------------+------------------------ 

 qi       | 2011-03-15 | 2011-07-15 |                    122 

Usecase: Credit Line Increase to Default 
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• In table loan_transactions, for each incidence of default (2 or more 
consecutive missedpayment), return the customer and the amount of 
the very last payment made. 

 

SELECT * 

FROM npath ( ON loan_transactions  

 partition by customer 

 order by eventtimestamp 

 mode(nonoverlapping) 

 pattern('PAYMENT.DEFT{2}') 

 symbols(eventtype='payment' as PAYMENT, 

  eventtype='missedpayment' as DEFT ) 

 result( first(customer of PAYMENT)  

  as customer, first(amount of PAYMENT)  

  as last_payment_amount ) 

); 

Related Usecase: Last Payment Before Default 

 customer | last_payment_amount 

----------+--------------------- 

 qi       |                 107 
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From the pageviews table, for all incidents of a customer visiting the 
"mortgage apply form" page, return the customer and the sequence of 
the last 3 urls visited leading up to the mortgage apply form pageview. 
 

pageviews 
 

 customer |   eventtimestamp    |         url 

----------+---------------------+--------------------- 

 antonio  | 2011-01-02 02:15:00 | page1 

 antonio  | 2011-01-02 02:16:00 | page1 

 antonio  | 2011-01-02 02:25:00 | page9 

 antonio  | 2011-01-02 05:15:00 | mortgage apply form 

 antonio  | 2011-01-02 05:16:00 | page1 

 karthik  | 2011-01-01 12:00:00 | seo landing1 

 karthik  | 2011-01-01 12:15:00 | page1 

 karthik  | 2011-01-01 12:16:00 | page23 

 karthik  | 2011-01-02 09:00:00 | page5 

 karthik  | 2011-01-02 09:05:00 | mortgage apply form 

 karthik  | 2011-01-02 10:00:00 | page12 

 

Exercise 1: Last 3 Pageviews Before Mortgage App 

Hint: you will want 
to use ilike and not 
ilike in your pattern 
symbol definitions. 
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nPath Exercise 1 Answer: 

SELECT * 

FROM npath (  

  ON pageviews  

  PARTITION BY customer 

  ORDER BY eventtimestamp 

  MODE ( nonoverlapping ) 

  PATTERN ( ‘PV.PV.PV.MAF’ ) 

  SYMBOLS( url not ilike ‘mortgage_apply_form’ as PV, 

 url ilike ‘mortgage_apply_form’ as MAF ) 

  RESULT ( first(customer of PV) as customer,  

 ACCUMULATE(url of PV) as leadingPageSequence ) 

); 
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nPath Cross-Symbol Reference 

• Example: find customers who view product P and buy it right 
away within 5 seconds 

• Use nPath LAG function support in SYMBOLS clause 

- LAG must be on left side of comparison and all arithmetic on right 
side of comparison 

- Can use multiple LAG expressions AND‟ed together 

 
select * from npath ( 

 on pageview 

 partition by userid 

 order by ts 

 mode (nonoverlapping) 

 pattern ('P.BUY') 

 symbols (url='p.html' as P, url='checkout.html' and              

lag(ts,1)>=ts-interval '5 seconds' as BUY) 

 result (first(userid of P) as userid, first(ts of P) as p_ts, 

first(ts of BUY) as buy_ts) 

); 
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In table monthly_balances, find 
instances where customers show 
at least 2 consecutive month to 
(prior) month balance decline of at 
least 10%, immediately followed 
by a balance increase of at least 
30%. Return customer name and 
sequence of balances covering the 
declines and increase months. 

Monthly Balance Declines Followed by a Increase 

 

monthly balances 
 

customer | eventdate  | balance 

----------+------------+--------- 

 bob      | 2011-01-01 |    2500 

 bob      | 2011-02-01 |    2000 

 bob      | 2011-03-01 |    1000 

 bob      | 2011-04-01 |     500 

 bob      | 2011-05-01 |     600 

 bob      | 2011-06-01 |    1700 

 joe      | 2011-01-01 |    1500 

 joe      | 2011-02-01 |    2500 

 joe      | 2011-03-01 |    2000 

 joe      | 2011-04-01 |    1500 

 joe      | 2011-05-01 |    2500 

 joe      | 2011-06-01 |    3500 
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select * 

from npath ( on monthly_balances 

 partition by customer 

 order by eventdate 

 mode(nonoverlapping) 

 pattern('PREV.DOWN+.UP') 

 symbols(true as PREV, 

  lag(balance,1)>= (balance/0.9)::int as DOWN,  

  lag(balance,1)<= (balance/1.3)::int as UP ) 

 result( first(customer of DOWN) as customer, 

  accumulate(balance of ANY(PREV,DOWN,UP)) as balance_sequence ) 

); 

 

 

 customer |     balance_sequence 

----------+-------------------------- 

 joe      | [2500, 2000, 1500, 2500] 

 

Monthly Balance Declines Followed by a Increase 
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• From the savings_transactions table, identify any pairs of adjacent 
deposits (ignore debits) whose amounts are over $500 and within 
2% of each other. Return the customer, the two deposit amounts, 
and the time lag between the first and the second of the deposits. 

 

savings transactions 
 

customer |   eventtimestamp    | amount 

----------+---------------------+-------- 

 bob      | 2011-01-01 00:00:00 |   1050 

 bob      | 2011-01-15 00:00:00 |   1040 

 bob      | 2011-01-17 00:00:00 |    -50 

 bob      | 2011-01-19 00:00:00 |     91 

 bob      | 2011-02-01 00:00:00 |   1051 

 bob      | 2011-02-14 00:00:00 |   1059 

 

Exercise 2: Detect Paycheck Deposits 

Hint: you will want 
to use lag in your 
symbol definitions. 



Confidential and proprietary. Copyright © 2011 Teradata Corporation. 58 

nPath Exercise 2 Answer: 

SELECT customer, firstDepositAmount, secondDepositAmount, 

(secondDepositDate – firstDepositDate) as DepositLag 

FROM npath (  

  ON (select * from savings_transactions where amount > 0) 

  PARTITION BY customer 

  ORDER BY eventtimestamp 

  MODE ( overlapping ) 

  PATTERN ( ‘D1.D2’ ) 

  SYMBOLS(amount > 500 as D1,  

      lag(amount, 1) BETWEEN 0.98*amount AND 1.02*amount as D2) 

RESULT (first(customer of D1) as customer,  

   first(eventtimestamp of D1) as firstDepositDate,  

   last(eventTimeStamp of D2) as secondDepositDate,  

   first(amount of D1) as firstDepositAmount, 

   last(amount of D2) as secondDepositAmount) 

); 
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• In table savings_transactions, find incidence of at least three 
consecutive deposits of less than $30 that are within an hour of the 
prior transaction, followed by a large debit of at least $150 that is 
within 48hrs immediately following last of the string of deposits. 
Return the customer, the count and sum of the deposits, start/end 
time of the small deposits, amount and time of the large debit. 
 

 customer |   eventtimestamp    | amount 

----------+---------------------+-------- 

 alice    | 2011-01-01 00:00:00 |    150 

 alice    | 2011-01-05 00:00:00 |    300 

 alice    | 2011-01-06 00:00:00 |    -10 

 alice    | 2011-01-06 02:00:00 |     15 

 alice    | 2011-01-06 02:03:00 |     20 

 alice    | 2011-01-06 02:04:00 |      2 

 alice    | 2011-01-06 02:50:00 |      8 

 alice    | 2011-01-06 03:30:00 |     28 

 alice    | 2011-01-06 03:31:00 |     20 

 alice    | 2011-01-06 03:35:00 |     19 

 alice    | 2011-01-07 09:00:00 |   -150 

 alice    | 2011-01-07 09:02:00 |     11 

 

Money Laundering: Small Credits then Big Debit 
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select * 

from npath ( on savings_transactions 

 partition by customer 

 order by eventtimestamp 

 mode(nonoverlapping) 

 pattern('INITIALSMALLDEP.SMALLDEP.SMALLDEP+.BIGDEBIT') 

 symbols(amount>=0 and amount<30 as INITIALSMALLDEP, 

  amount>=0 and amount<30 and lag(eventtimestamp,1)>=eventtimestamp-interval '1 hour' as SMALLDEP,  

  amount<=-150 and lag(eventtimestamp,1)>=eventtimestamp-interval '48 hours'  as BIGDEBIT) 

 result(first(customer of SMALLDEP) as customer, 

  count(* of ANY(INITIALSMALLDEP,SMALLDEP)) as smalldeposit_count, 

  sum(amount of ANY(INITIALSMALLDEP,SMALLDEP)) as smalldeposit_total, 

  first(eventtimestamp of INITIALSMALLDEP) as smalldeposit_starttime, 

  last(eventtimestamp of SMALLDEP) as smalldeposit_endtime, 

  first(eventtimestamp of BIGDEBIT) as bigdebit_time, 

  first(amount of BIGDEBIT) as bigdebit_amount ) 

); 

 customer | smalldeposit_count | smalldeposit_total | smalldeposit_starttime | smalldeposit_endtime |    

bigdebit_time    | bigdebit_amount 

----------+--------------------+--------------------+------------------------+----------------------

+---------------------+----------------- 

 alice    |                  7 |                112 | 2011-01-06 02:00:00    | 2011-01-06 03:35:00  | 

2011-01-07 09:00:00 |            -150 

Money Laundering: Small Credits then Big Debit 
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From the credit_transactions table, identify the incidence of at least 2 
autorepair category spend within 2 weeks of a prior autorepair spend, 
immediately followed by an autodealer spend of at least $500 that is 
within 2 weeks of the prior autorepair spend. Return the customer, 
the number and total autorepair spend, the date of the first and last 
autorepair spend, and the date and amount of the autodealer spend. 

 

 customer | eventdate  | merchant | merchantcategory | amount 

----------+------------+----------+------------------+-------- 

 alice    | 2011-01-02 | m1       | cat1             |    150 

 alice    | 2011-01-03 | m2       | cat2             |     20 

 alice    | 2011-01-10 | m2       | cat2             |    -10 

 alice    | 2011-01-10 | m3       | autorepair       |    150 

 alice    | 2011-01-13 | m4       | autorepair       |     45 

 alice    | 2011-01-14 | m3       | autorepair       |    109 

 alice    | 2011-01-20 | m5       | autorepair       |    230 

 alice    | 2011-02-01 | m6       | autodealer       |    500 

 

Exercise 3: Auto Repairs Leading to Auto Purchase 
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nPath Prototype for Proxy Log Pattern Detection 

CREATE TABLE npath_results DISTRIBUTE BY HASH(asset_tag) AS 

SELECT *, last_ts-first_ts AS pattern_duration 

FROM nPath( 

 ON ( select p.*, d.mac_address, d.asset_tag 

  FROM proxy P 

  JOIN 

  dhcp d 

  ON p.ip = d.ip 

  AND p.timestamp BETWEEN d.lease_start AND d.lease_end 

    WHERE p.timestamp BETWEEN ‘2011-10-10’ AND ‘2011-10-17’) 

PARTITION BY asset_tag 

ORDER BY timestamp 

MODE( nonoverlapping )  

PATTERN(‘SN{1,3}.A*.BT{3,}.A*.BIGMAIL’)  

SYMBOLS(  

    ( url LIKE ‘%twitter.com%’ OR url LIKE ‘%facebook.com%’ ) AS SN, -- social network 

        true AS A, 

   (url LIKE ‘%piratebay%’ OR url LIKE ‘%torrentz%’ ) AS BT, -- bit torrent 

  (url LIKE ‘%mail.yahoo.com%’ AND bytes_sent > 50000 ) AS BIGMAIL   ) 

RESULT( FIRST (asset_tag OF SN) AS asset_tag, 

  ACCUMULATE (p.ip OF ANY(SN,BT,BIGMAIL)) AS ips, 

  ACCUMULATE (url OF SN) AS sn_urls, 

  ACCUMULATE (url OF BT) AS bt_urls, 

    FIRST (timestamp OF SN) AS first_ts, 

  LAST (timestamp OF BIGMAIL) AS last_ts ) 

) T 

; 

 



Aster Analytical Foundation Overview 
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Path Analysis 

Discover patterns in rows of sequential data 
 

Statistical Analysis 

High-performance processing of common statistical calculations 
 

Relational Analysis 

Discover important relationships among data 
 

Text Analysis 

Derive patterns in textual data 
 

Cluster Analysis 

Discover natural groupings of data points 
 

Data Transformation 

Transform data for more advanced analysis 

 

Six Categories of Analytic Functions 
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Sample SQL-MapReduce Packaged Functions 

Modules SQL-MapReduce Analytic Functions 

Path Analysis 

Discover patterns in rows 
of sequential data 

• nPath:  complex sequential analysis for time series and behavioral patterns 

• Sessionization:  identifies sessions from time series data in single pass  

• Attribution: operator to help ad networks and websites to distribute “credit”; 
options such as Uniform, Weighted and Exponential by occurrence or time. 

Graph and 
Relational Analysis 

Analyze patterns across 
rows of data 

• Graph analysis:  finds shortest path from distinct node to all other nodes in 
graph 

• nTree:  new function for performing operations on tree hierarchies. * 

• Other: triangle finding, square finding, clustering coefficient * 

Text Analysis 

Derive patterns in textual 
data 

• Sentiment Analysis: classify content is positive or negative  
(for product review, customer feedback) * 

• Text Categorization: used to label content as spam/not spam * 

• Entity Extraction/Rules Engine: identify addresses, phone number, names 
from textual data * 

• Text Processing:  counts occurrences of words, identifies roots, & tracks 
relative positions of words & multi-word phrases 

• nGram:  split an input stream of text into individual words and phrases 

• Levenshtein Distance:  computes the distance between two words 

Data 
Transformation 

Transform data for more 
advanced analysis 

• Pivot:  convert columns to rows or rows to columns * 

• Log parser: Generalized tool for parsing Apache logs * 

• Unpack:  extracts nested data for further analysis 

• Pack: compress multi-column data into a single column 

• Antiselect:  returns all columns except for specified column 

• Multicase:  case statement that supports row match for multiple cases 

New 

New 

New 
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Sample SQL-MapReduce Packaged Functions 

Modules SQL-MapReduce Analytic Functions 

Statistical 
Analysis 

High-performance 
processing of 
common statistical 
calculations 

• GLM: generalized linear model function that supports logistic, linear,  
log-linear  regression models. Returns all parameters similar to R/SAS * 

• Naïve Bayes Classifier: simple probabilistic classifier;  
applies Bayes Theorem to data sets. * 

• Support Vector Machines: a supervised learning method for classification and 
regression analysis * 

• PCA: Principal Component Analysis -transforms a set of observations into a set of 
uncorrelated variables.  * 

• Histogram:  function to assign values to bins 

• Decision Trees:  creates model of decisions and their possible implications 

• Approximate percentiles and distinct counts:  calculates within specific variance 

• Correlation:  characterizes the strength of the relation between different columns 

• Regression:  linear/logistic regression btwn output variable & set of input variables  

• Averages:  moving, weighted, exponential or volume-weighted averages 

Cluster 
Analysis 

Discover natural 
groupings of data 
points 

• k-Means:  clusters data into a specified number of groupings 

• Canopy:  partitions data into overlapping subsets where k-means is performed 

• Minhash:  buckets highly-dimensional items for cluster analysis 

• Basket analysis:  creates configurable groupings of related items from transaction 
records in single pass 

• Collaborative Filter: predicts the interests of a user by collecting interest information 
from many users 

New 
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Path Analysis Functions: 

 

• nPath: Complex sequence analysis for pattern matching on time 
series data. 
 
 

• Path Generator:  This function takes as input a set of paths 
where each path is a route (i.e. a series of pageviews) taken by a 
user from start to end.  Then for each path, it generates the 
correctly formatted sequence and all possible sub-sequences for 
analysis by the Path Summarizer function.  (See below…)  
 
 

• Path Starter: Generates all the children for a particular parent 
and sums up their count.  Note: the input data has to be 
partitioned by the parent column. 
 
 

• Path Summarizer:  This function takes as input the Path 
Generator function output and produces sum counts on all nodes.  
A “node" can be a plain sub-sequence (where the sequence and 
sub-sequence are different) or an exit sub-sequence (where both 
the sequence and sub-sequence are the same). 
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Sessionization 

 

  
• A session as a sequence of web site clicks by a user where no 

more than n seconds pass between successive clicks. 
 

• Sessionization is the process of mapping each user click in a 
clickstream to a session identifier.   
 

• If there is not a click from a user for n seconds then we start a 
new session.  

timestamp userid … 

10:00:00 238909 … 

00:58:24 7656 

10:00:24 238909 

02:30:33 7656 

10:01:23 238909 

10:02:40 238909 

timestamp userid … sessionid 

10:00:00 238909 … 0 

10:00:24 238909 0 

10:01:23 238909 0 

10:02:40 238909 1 

00:59:24 7656 0 

02:30:33 7656 1 
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• The Histogram SQL-MR function is used to understand the 
probability distribution of a continuous variable. 

 

• It divides the entire data set into bins then identifies the number 
of points in each bin based on the value of a particular column. 

 

• Bins can be:  

- continuous or discrete  

- equal or un-equal  

- overlapping or non-overlapping 

  

• BI tools do this by issuing multiple queries on the same table. 

 

Histogram 
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SELECT * from histogram_reduce 

( ON histogram_map 

 ( ON customers 

  BIN_SIZE( „10‟ ) 

  START_VALUE( ‟0‟ ) 

  VALUE_COLUMN( ‟age‟ ) 

 )  

 PARTITION BY ( bin ) 

 ACCUMULATE( 'bin', 'start_bin', 'end_bin‟ ) 

) ORDER BY bin; 

Histogram: Continuous, Non-overlapping, Equal 
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Histogram: Discrete, Overlapping, Un-Equal 

SELECT * from histogram_reduce 

( ON histogram_map 

      ( ON customers 

              INTERVAL('0:30','20:30','40:70','70:100000‟) 

              VALUE_COLUMN(‟age') 

      )  

      PARTITION BY ( bin ) 

      ACCUMULATE ( 'bin', ‟end_bin‟, ‟start_bin') 

) ORDER BY bin; 
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Predictive Analytics 

• Predictive Analytics is the process of assigning likelihoods to 
future actions based upon the occurrences of past actions. 

 

• Pre-packaged analytic operators 

- Machine-learning Classification: Decision Tree; Naïve Bayes 

- Regression Analysis: Linear regression; Logistic regression 

 

 

• Methodology 

- N-fold cross-validation 
 

• Usecases 

- Ecommerce: propensity to buy big ticket product 

- Insurance: propensity to buy product; propensity to defect  

- Healthcare: propensity for hospital re-admission within N days 



Confidential and proprietary. Copyright © 2011 Teradata Corporation. 75 

Predictive Analytics – Iterative Approach 

1. Define prediction problem: 

• Input: rows (e.g. set of users) and columns (e.g. # jobs) for past 

• Output: boolean/categorical/numeric metric for future 

 

 

2. Assembly: 

• Algorithm 

• Classification: decision tree, Naïve Bayes, SVM, Regression: linear, logistic, .. 

• Algorithm parameters (e.g. decision tree # levels) 

• Dataset 

• Segment: e.g. US users; high tech users; male users 

• Time snapshot: as of April 1, 2011 

• Feature set 

• Output (e.g. propensity to buy LinkedIn Premium product) 
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Predictive Analytics – Iterative Approach (Cont.) 

3. Validate: 

• Divide labeled dataset into training and test set 

• Train on training set, evaluate accuracy metrics on test set 

• Repeat on different train/test sets for cross-validation 

 

 

4. Iterative Refinement:  

• Change step#2 specifications 

• Perform step #3 validation 

• Repeat over and over 
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Machine Learning Classification 

• Data:  

- input features (categorical and numeric) 

- output prediction (categorical) 

 

• Methodology 

- Training: Build model from labeled set of <input features, known output value> 

- Validation: Use model on holdout labeled set, read <input features> and predict 
output.  Evaluate accuracy by comparing predicted and known output. 

- Classification: Use model on unlabeled dataset without known output 

- Cross-validation: repeat train+validate multiple times by dividing one labeled 
dataset into multiple folds 

 

• Accuracy metrics 

- Accuracy: # predictions match known output / # predictions 

- Precision (wrt an output value): # true positives / # predictions of this value 

- Recall (wrt an output value): # true positives / # known outputs of this value 
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Precision and Recall (From Wikipedia) 

 

• When a program for recognizing dogs in a scene correctly 
identifies 4 of the 9 dogs  mistakes 3 cats for dogs: 
 

• its precision is 4/7  (probability that the returned results are relevant) 
 

• and recall is 4/9     (probability that relevant results are returned) 

 

• When a search engine returns 30 pages, only 20 of which 
were relevant, while failing to return 40 relevant pages:  

 

• its precision is 20/30 = 2/3 
  

• while its recall is 20/60 = 1/3 

 

• Good Prediction Models provide precision and recall close to 1. 
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Machine Learning Classification - Decision Tree 

• Training: use labeled training set 
to create decision tree model; 
algo chooses splitting attribute 
that results in two subtrees each 
with dominating output class 
 

• Parallelization 

• Training: ensemble method builds a 
decision tree on each vworker 

• Model: copy all trees to all vworkers 

• Classification: locally classify each 
row using forest of decision trees – 
aggregate one output prediction 

 

• Our implementation requires 
numeric predictor variable 

• Training: categorical values must 
be converted to integral values 

• Classification: analyst must 
discretize continuous predicted 
value into categorical 

Hypothetical Nook Purchase 
Propensity Decision Tree Model 
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Machine Learning - Decision Tree Function 

• Training 
SELECT * FROM forest_drive ( 

    ON (select 1) 

    PARTITION BY 1 

    domain('[queen hostname/ip]') 

    database('[database]') 

    userid('[userid]') 

    password('[password]') 

    inputTable('[input table name]') 

    outputTable('[output model table name]') 

    response('[numeric response column name]') 

    numericInputs('col1','col2'..) 

    categoricalInputs('col3','col4'..) 

    numTrees('[number of trees to grow]') 

 ); 

 

 

• Labeled dataset Response column – 
numeric type.  

• numTrees: >= # vworkers in cluster 

• Classification 
 SELECT *FROM forest_predict ( 

      ON [test_set_table] 

      domain('[domain]') 

      database('[database]') 

      password('[password]') 

      userid('[userid]') 

      forest('[model_table]') 

      numericInputs('[numeric feature column names]') 

      categoricalInputs('[categorical feature column names]')       

      idCol('[id_column to uniquely identify an input row]') 

); 

 

 

• Output of classification: <id_column, predicted 
value(numeric) > 

• Join back to input test_set_table to compare 
input feature values and predicted output 

• For validation, join back to input test_set_table  
to compare true output and predicted output to 
compute precision/recall 
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Machine Learning Classification - Naïve Bayes 

 

 

 

 

P(buy nook|male, 20 orders last month, not book club member) = 

1/Z * P(buy nook) * P(male|buy nook) * P(20 order last month|buy 

nook) * P(not book club member|buy nook) 

 

P(not buy nook|male, 20 orders last month, not book club member) 

= 1/Z * P(not buy nook) * P(male|not buy nook) * P(20 order last 

month|not buy nook) * P(not book club member|not buy nook) 

 

• Training: Calculate prior probability distributions on each 
vWorker. Assume independence of input features. Combine 
probability distributions globally and copy to all vWorkers. 
 

• Classification: Use prior probability distribution to compute   
the most likely output class for each local row. 
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Machine Learning - Naïve Bayes Functions 

• Training  
CREATE DIMENSION TABLE [model_table_name] 

AS 

SELECT * FROM naiveBayesReduce( 

  ON( SELECT * FROM naiveBayesMap( 

      ON [input_table] 

      response('[response column name]') 

      numericInputs('[numeric feature 

column names]') 

      categoricalInputs('[categorical 

feature column names]') 

    ) 

  ) 

  PARTITION BY class 

); 

 

• Response column can be integer or 
non-numeric categorical values 

• Classification 
SELECT * FROM naiveBayesPredict( 

  ON [input_table]   

  DOMAIN( [queen_ip:port] ) 

  DATABASE( [db_name] ) 

  USERID( [db_userid] ) 

  PASSWORD( [db_pwd] ) 

  MODEL( [model_table_name] ) 

  IDCOL( [id_column to uniquely identify an 

input row] ) 

  numericInputs('[numeric feature column 

names]') 

  categoricalInputs('[categorical feature 

column names]')     

); 

 

• Output: <id column, predicted 
categorical value, loglikelihood of each 
possible categorical value..> 
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Logistic Regression 

 

• Logit function takes real input value 
(function z) and outputs [0,1] 

 

• Training: Solve for parameters B0..Bk 
for best-fit f(z(x1..xk)) on training set 

 

• Our implementation requires: 

- First column of input table must be the 
predictor feature. Must be boolean type. 

- Rest of the columns are input features. 
Must be real, integer, or boolean type. 
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Logistic Regression - Training 

SELECT * FROM log_regression ( 

    ON (select 1) 

    PARTITION BY 1 

    domain('[queen hostname/ip]') 

    database('[database]') 

    userid('[userid]') 

    password('[password]') 

    inputTable('[input table name]') 

    outputTable('[output model table name]') 

    weights('weight1','weight2'..) 

    columnnames('col1','col2'..) 

); 

 

• Columnames: optional.  Must be a list of <predictor column, input col1, input col2..> 

• Predictor column must be boolean type 

• Input columns must be real/int/boolean type 
 

• Weights: optional.  Must have same # of values as Columnnames clause list.  
Specifies initial weights.  Default 0.1 for all features. 
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Logistic Regression - Prediction 

SELECT * FROM log_predict ( 

      ON [test_set_table/(SELECT QUERY)] 

      domain('[domain]') 

      database('[database]') 

      password('[password]') 

      userid('[userid]') 

      weightstable('[model_table]') 

      thresholds('threshold1', 'threshold2',..) 

); 

• ON clause: input relation must be <id column, input col1, input col2…> where the input 
columns match the input columns fed to log_regression. 

• Thresholds: optional. By default we discretize prediction as true/false at 0.5. User can 
specify multiple custom thresholds. 

• Output of classification 

• Default: <id_column, probability between 0 and 1, predicted value true/false > 

• With thresholds clause: <id_column, probability between 0 and 1, predicted value true/false based on 
threshold1, threshold2, ..> 

• User can join back to input test_set_table to compare input values with predicted output. 

• For validation, join back to input test_set_table to compare true output and predicted 
output to compute precision/recall. 
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Linear Regression 

Y = B0 + B1 x1+ ..+ Bk xk 

 

• Linear regression function is a linear combination of the input variables. 

 

• Training: Solve for parameters B0..Bk for a best-fit Y=f(x1..xk) on the 
training set. 
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Linear Regression - Training 

SELECT *  

FROM LINREG 

     ( ON LINREGMATRIX 

          ( ON tablename/(select query)  

          )  

       PARTITION BY 1 

     ); 

 

 

• LINREGMATRIX function executes on all vworkers in parallel, output small amount of 
summary data 

• Input schema: <input col1, input col2, … input colK, output predictor column> 

• All input columns and output column must be numerical (integral/real) type 

 

• LINREG function executes on only 1 vworker by combining output of LINREGMATRIX 

 

• Output coefficients B0..Bk. 
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Linear Regression - Prediction 

• Unlike logistic regression, there is not a function for running prediction. 

• User must write SQL to apply the coefficients to compute the prediction. 
 

SELECT *  

FROM LINREG 

     ( ON LINREGMATRIX 

          ( ON (select input1,input2,output from dataset)  

          )  

       PARTITION BY 1 

     ); 

 coefficient_index |       value        

-------------------+------------------- 

                 0 |  2.85714285714288 

                 1 |  -2.0571428571429 

                 2 | 0.342857142857149 

 

select input1,input2,output, 2.8571 - 2.0571*input1 +0.3429*input2 as output_predict 

from dataset limit 5; 

 input1 | input2 | output | output_predict  

--------+--------+--------+---------------- 

      7 |     37 |      1 |         1.1447 

      7 |     38 |      1 |         1.4876 

      7 |     39 |      2 |         1.8305 

      7 |     40 |      3 |         2.1734 

      7 |     41 |      3 |         2.5163 
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SELECT *  

FROM SMAVG  

     ( 

       ON input_table 

       COLUMNS('column_names') 

       RETURN_ALL('true|false')  

       WINDOW_SIZE('window_size') 

     ) 

Simple Moving Average 

• COLUMNS: Optional clause which 
specifies the column name for 
which simple moving average is 
required. If this clause is omitted, 
all the input rows are output as is. 

 

• RETURN_ALL: Optional clause 
which specifies if the first 
WINDOW_SIZE rows should be 
output or not. Since simple moving 
average for the first WINDOW_SIZE 
is not defined, null‟s will be 
returned for those columns. 

 

• WINDOW_SIZE: Optional clause 
which specifies the number of old 
values to be used for calculating 
the new weighted moving average. 
The default window size is 10. 
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• Exponential moving average:  The weighted moving 
average function computes the average over a number of 
points in a time series but applies a damping (weighting) 
factor to older values. The weighting for the older values 
decreases exponentially without discarding older values. 

 

• Weighted moving average:   The weighted moving 
average computes the average over a number of points in 
a time series but applies a weighting to older values.  The 
weighting for the older values decreases arithmetically. 

 

• Volume weighted average price:  The volume weighted 
average price computes the average trade price of a stock 
over a specified time interval. 

Other “Average” SQL-MR Functions: 
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Graph Analysis - Single Source Shortest Path 

• Input 

- Relational representation of edges in a graph  

<source vertex id, destination vertex id> 

- Specify starting vertex id 

 

 

• Output: list of all vertices 

- Vertex id 

- Whether this vertex is reachable from starting vertex 

- All vertices this vertex is connected to via an edge 

- Least # hops from starting vertex 

- Path (sequence of vertex ids) of shortest path from starting vertex 
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Graph Analysis – nTree 

What is nTree? 

- SQL-MapReduce function  

- Build order tree hierarchies 

- Link order to root 

- Propagate/aggregate information 
across the tree 

 

Benefits 

- Multi-level trees built with single 
pass over the data 

- Variety of aggregates built-in : 
propagate, sum, average, path. 

- Detect and break cycles in bad data 

- Variety of tree-traversal options : 
push down, push up. 

 

SQL-based approaches would require 
significant SQL code changes to modify 
analysis (traversal pattern, aggregates) 

 

CAVEAT: problem must be partition able 

 

•Time-series analysis, 
uncovering patterns in 
sequential steps 

 

Hierarchy analysis 

Ord_id Parent 
Ord_id 

Symbol Root 
Order_id 

Level 

9Y091 AAPL 9Y091 1 

5X452 9Y091 AAPL 9Y091 
 

2 

5Z347 5X452 AAPL 9Y091 
 

3 

7U198 5Z347 AAPL 9Y091 
 

4 

SELECT * 

FROM nTree( 

  ON (orders) 

  PARTITION BY symbol 

  KEY('ord_uuid') 

  PARENT('parent_ord_uuid') 

  ISROOT('is_root') 

  NOCYCLE('1') 

); 
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nTree On Order Data 

 

SELECT * 

FROM nTree( 

  ON (orders) 

  PARTITION BY symbol 

  ROOT_NODE(‘parent_ord_id=NULL‘) 

  PARENTS(‘ord_id') 

  CHILDS (‘parent_ord_id’) 

  STARTS_WITH(ROOT) 

  MODE (PUSH_DOWN) 

  RESULT( 

     PROPOGATE(ord_id) as grand_parent_id, 

     LEVEL() as level 

  ) 

  OUTPUT(‘ALL’) 

  ALLOW_CYCLES(‘true’) 

  ID(‘ord_id’) 

); 

 

 

Parellelize across workers 

Detect cycles 

Build along ord_uuid 

and parent_ord_uuid 

Traversal options 
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SELECT * FROM nGram 

( 

 ON my_docs 

 TEXT_COLUMN('txt') 

 DELIMITER(' ') 

 GRAMS(2) 

 OVERLAPPING('true) 

 CASE_INSENSITIVE('true') 

 PUNCTUATION(„[.,?!]') 

 RESET('[.,?!]') 

 ACCUMULATE('id','src‟) 

); 

 

nGram 

Parse text into groupings of words. 
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Text/Document Processing 

• Extracting text from documents/files: 

- PDF 

- Office 

- HTML 

- HDFS 
 

• Text analysis 

- Preprocessing 

- Keyword/phrase discovery 

- Text classification 

- Sentiment Analysis 
 

• Extracting structure from unstructured content: 

- Apache Weblog Parser 

- JSON Parser 

- XML Parser 
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Sentiment Analysis 

• Sentiment Analysis 

- Dictionary approach: Positive/negative word lists.  

- Scan a document and count # of +/- words  

- Score count normalized by document length 

 

• Text classification 

- Naïve Bayes classification 

- Input documents processed as sparse occurrence vector of words.  

- Usecase 

• Spam detection 

• Sentiment analysis 

• Topic classification. E.g. is the customer service chat log trending about 
mortgage/savings/investing/insurance/loan products? 
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The text_parser function has the following specifications: 

  

• Input: a column containing text data 

 

• Output:  one row for each unique token in each document 

- Token, count, position(s), other columns specified 

 

• Variety of control parameters 

- Case sensitivity 

- Porter stemming (e.g., “containing” -> “contain”) 

- Removal of stop words (e.g., “of”, “the”) 

 

• Useful for processing large databases of text 

 

Text Parser 
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• Input table: war_diary 

 

Text Parser Sample Invocation - Input 

reportkey date category region text 

FE21A53… 2004-05-18 Non-Combat 
Event 

RC EAST At the Village 
of Dara there 
seems to be 
another… 

FE21A53… 2004-05-18 Enemy 
Action 

RC EAST At 0200X, 
The WAZA 
KHWA 
police… 

… … … … … 
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SELECT * FROM text_parser 

  ( 

 ON war_diary 

 TEXT_COLUMN („summary‟) 

 ACCUMULATE(„reportkey‟) 

 REMOVE_STOP_WORDS(„true‟) 

 LIST_POSITIONS(„true‟) 

); 

Text Parser Sample Invocation - Process 
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Text Parser Sample Invocation - Output 

reportkey token frequency position 

BFBE783… delhi 1 21 

080e000… Picked 1 13 

60C3b2… locals 5 85,104,… 

811A82… madrassa 2 17,39 

8CB6E0… frontiers 1 50 

199711… afghani 3 2,29,31 

… … … … 
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K-means Clustering 

• Find hidden patterns/clusters in data by  
Dividing a set of data points into K disjoint 
subsets of similar/nearby points 
 

• Algorithm: 

1. Starting with K clustroids - User specified/pick 
random points in space/pick random points 

 

2. Calculate cluster membership for each data 
points – find closest clustroid 
 

3. Recompute clustroid as avg of cluster member 
points 
 

4. Repeat steps 2 and 3 until converge or reach 
limit in # iterations 

 

• Data points are set of numeric feature values 
 

 

• Usecases: customer segmentation, anomaly 
detection, recommendation systems… 
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K-means Clustering Function 

SELECT * 

FROM kmeans 

( 

  ON (SELECT 1) 

  PARTITION BY 1 

  [ DOMAIN('<host_ip>') ] 

  [ DATABASE('<database_name>') ] 

  [ USERID('<db_user>') ] 

  [ PASSWORD('<password>') ] 

  INPUTTABLE('<input_table_name>') 

  OUTPUTTABLE('<output_table_name>') 

  NUMBERK(<number_of_means>) 

  [ MEANS(<starting_clusters>) ] 

  THRESHOLD(<threshold>) 

  MAXITERNUM(<max_iterations>) 

); 

• Input table schema: <id column, 
numeric feature1, numeric feature2 …> 
 

• Output table schema: <id column, 
cluster id (0 to k-1), numerical 
feature1, numerical feature2 …> 
 

• Means clause: optional. User specified 
list of starting clustroids. E.g. for k=2, 
“means(„15_70‟, „22_150‟)” maps to 
starting clustroid coordinates (15,70) 
and (22,150). 
 

• Threshold: optional. Convergence 
criteria for distances in centroid 
between iterations. 
 

• Maxiternum: optional. Convergence 
criteria in terms of # iterations. 
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Canopy Clustering 

• Quickly find a set of clustroids subject to constraints: 

- Max distance from clustroid to cluster member point (t1) 

- Min distance between any two clustroids (t2) 
 

• Can be used as preprocessing step to K-means 
 

• Quickly partition data points into overlapping canopies (clusters), 
then apply more expensive clustering technique within each canopy. 
 

 

• Input table schema: <id column, numerical feature1, numerical feature2 …> 

 

• Output table schema: <canopy id, numerical feature1, numerical feature2 …> 

 

• Input parameters: t1, t2 where t1>t2. 
 

java -classpath canopyDriver.jar:<class path to file> -database=beehive -

inputtable=canopyinput -outputtable=canopyoutput -t1=2 -t2=1 -userid=beehive -

password=beehive -domain=192.168.75.100 
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Minhash/Locality Sensitive Hashing 

• Generate probabilistic and overlapping clusters of users who are 
“similar” because they have bought similar items 

- Can generate similar items that have been bought by similar users 

 

• Assign a pair of users to the same cluster with probability proportional to 
the overlap between the set of items that these users have bought 

- For a given user, calculate multiple cluster ids using several hash 
functions applied to a randomly chosen item this user has bought. 
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Market Basket Generator 

• Generate all itemsets of size K 

- E.g. K=2: <milk, bread> are bought in the same transaction 1000 times; 
<milk, beer> are bought together 500 times. 

 

• Usecases 

- Item to item affinity: What products are most commonly bought with milk? 

- Recommendation:  

• 1000 users watched both video1 and video2 (output of market basket generator). 
Video1 was watched by 1200 users, video2 was watched by 1100 users.  

• Probability(watch video2 | watch video1) = 1000/1200=0.83. This probability is high, 
if a user watches video1 and has not yet seen video2, we should recommend video2. 

• Probability(watch video1 | watch video2) = 1000/1100=0.91. If a user watches 
video2 and has not yet seen video1, we should recommend video1. 
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Market Basket Generator Function 

SELECT * 

FROM mbg 

( 

ON table_name|(query) 

PARTITION BY <partition_column_1> [, 

... ] 

[BASKET_SIZE(<basket_size_value>)] 

BASKET_ITEM('<basket_item_column>') 

ACCUMULATE('column1 [, column2, ...]') 

[ITEM_SET_MAX(<item_set_max_value>)] 

[COMBINATIONS('true|false')] 

); 

 

• PARTITION BY: grain of baskets. E.g. 
Partition by customerid versus partition 
by customerid, transactionid 
 

• BASKET_ITEM: single column that 
defines an item, e.g. productid 
 

• BASKET_SIZE: default 2. Generate all 
itemsets of <basket_size> # of items 
 

• ACCUMULATE: input columns to output 
with the itemset, e.g. customerid or 
customerid,transactionid 
 

• COMBINATIONS: optional. false: return 
<item1,item2> as well as 
<item2,item1>. Default True: return 
only 1, the one in lexicographical order. 
 

• ITEM_SET_MAX: optional. Default 100. 
If a partition has more than this # 
items, no output will be emitted. 
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Market Basket Generator Output 

• Output: <accumulate columns, item1, item2, .., item_basketsize, count> 

- Count: # baskets that contain this item set 
 

• From itemsets to recommendations using SQL 

- Generate basket count for each unique item 

- Join back to market basket output, e.g. 

   <item1, item2, copurchase_basketcount, item1_basketcount, item2_basketcount> 

- Compute recommendation metric 

• Copurchase_basketcount/ (max(item1_basketcount, item2_basketcount) ) 

• Copurchase_basketcount^2  /  (item1_basketcount * item2_basketcount)  

• Metric range [0-1]. 1 means 100% affinity, P(item1|item2)=P(item2|item1)=1.0. 
 

• Forward in time basket generation 

- Milk and bread copurchase affinity there is no time dependency 

- Algebra book and calculus book copurchase has a strong time order; auto insurance 
and homeowners insurance probably has a fairly strong time order 

- Adding a flag to market basket generator SQLMR 
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SELECT *  

FROM BASKET_GENERATOR 

     ( 

       ON input_table 

       PARTITION BY (col, [, ...])  

       BASKET_ITEM('basket_item_column')  

       BASKET_SIZE('basket_size_column')  

      [ACCUMULATE('col' [, '...'])]  

      [COMBINATIONS('true|false')] 

     ); 

Market Basket Analysis Syntax 
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• input_table: Table that contains the items to be collected into baskets. 

 

• BASKET_ITEM: Required. Name of the column (in the input table) that 
contains the items to be collected into baskets.  Each row in the 
BASKET_ITEM column is considered to be one item. 

 

• BASKET_SIZE: Required. Number of items to be included in a basket. 

 

• ACCUMULATE: Optional. Names of input columns to be returned as-is 
in the output. All input columns not named here are left out of output. 

 

• COMBINATIONS: Optional. Specifies if the output should include all 
permutations of the items (each unique ordering of the items is 
considered a unique basket) or only all combinations of the items 
("tomatoes and basil" is considered the same as "basil and tomatoes"). 
By default, the function returns only the unique combinations. 

Market Basket Function Parameters 
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• User is expected to partition the input data in such a way that 
each partition represents a collection of items. All the columns 
specified in the ACCUMULATE clause will be emitted as is.  

 

• It is assumed that each row of the BASKET_ITEM column 
specifies one single item.  

 

• Columns specified in the ACCUMULATE clause should be a 
subset of columns specified in the PARTITION BY clause.  

Market Basket Requirements 
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SELECT *  

FROM BASKET_GENERATOR 

     ( 

       ON transactions_table  

       PARTITION BY (userid)  

       BASKET_ITEM('sku')  

       BASKET_SIZE('3')  

       ACCUMULATE(„userid')  

       COMBINATIONS('true') 

     ); 

Market Basket Example 

Userid Sku Trans # 

123 111 555 

123 222 556 

123 333 557 

123 444 558 

Input 

Userid Sku1 Sku2 Sku3 

123 111 222 333 

123 111 222 444 

123 222 333 444 

123 111 333 444 

Output 
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Collaborative Filtering 

• Very common use case for retailers, on-line retailers, 
internet and consumer-focused financial institutions  

 

• Source data could be: 

- retail purchase data 

- on-line purchase data 

- activity data 

- credit card purchase data 

 

• Output could fuel “analytics products” like: 

- “people you bought this also bought …” 

- “people who viewed this profile also viewed…” 

- “people who liked this job also liked …” 
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B&N Recommendations with Collaborative Filtering 
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Data Transformation - Pack 

SELECT * FROM pack ( 
 on sample_table 
 COLUMN_NAMES ('age‟, „gender‟, „race‟, „numBuys‟, „numSells') 
 COLUMN_DELIMITER („,‟) 
 INCLUDE_COLUMN_NAME („false‟) 
 PACKED_COLUMN_NAME(„packed_data‟) 
);  
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Data Transformation - Unpack 

SELECT * FROM unpack 
( 
 on sample_table 
 DATA_COLUMN(„packed_data‟) 
 COLUMN_NAMES('age‟, „gender‟, „race‟, „numBuys‟, „numSells') 
 COLUMN_TYPES('integer‟, „varchar‟, „varchar‟, „integer‟, „integer') 
 COLUMN_DELIMITER(„,‟) 
 IGNORE_BAD_ROWS(„true‟) 
);  
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Data Transformation – Multicase (Input & Output) 
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Data Transformation – Multicase (Processing) 

select * from multi_case 

(ON   

 ( 

  SELECT *,  

  age < 1 as case1,  

  (age >= 1 &&  age <=2 ) as case2,  

  (age >= 2  && age <=12) as case3,  

  (age >=13 && age <=19) as case4,  

  (age >=16 && age <=25) as case5,  

  (age >=21 && age <=40) as case6,  

  (age >=35 && age <=60) as case7,  

  (age >=60) as case8 

  FROM mydata 

 ) 

 

 LABELS( 

  ‘case1as"infant"', 

  'case2as"toddler"’, 

  'case3 as "kid"', 

  'case4 as "teenager"', 

  'case5 as "young adult"', 

  'case6 as "adult"', 

  'case7 as "middle aged person"',  

  'case8as"seniorcitizens"’ 

 ) 

); 
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• SELECT * FROM logs 
row_id |    json_string 

--------+--------------------- 

        1 | [1024,"Karthik",42] 

        2 | [923,"George",25] 

        3 | [48,"Frank",45] 

        4 | [148,"Joe",49] 

 

 

• SELECT * FROM jsonparse( ON logs …) 
•        row_id |  id    |  name    | age 

•        --------+------+----------+----- 

•                1 | 1024 | Karthik  |  42 

•                2 |  923  | George  |  25 

•                3 |   48   | Frank    |  45 

•                4 |  148  | Joe        |  49 

JSON Parsing 

SOURCE: logs Table 

Using the jsonparse function  
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SQL-MR Apache Log Format Parsing 
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Dynamically interpret web log data via MapReduce 

Apache Log Parsing Example 

Clickstream_Log 

Timestamp Referral Customer Session 

Raw Log Input 

Aster Data MPP Analytic Platform 

SQL-MapReduce Staging for nPath 

Clickstream_Log 

Raw Log Input 

Timestamp Referrral Customer Session 

SQL-MapReduce Staging for nPath 

SQL-MapReduce 
program runs 
in-platform 

Click-stream Log Data 

• High-speed, 
parallel 
loading 

• Raw Apache 
weblogs 
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beehive=> select * from myspacedecrypt_keyfile( on testdecrypt inputcolumn('data')); 
a | data | decrypted_output | decryption_error  
---+-----------------------------------------------------------------------------------------------------------------
----------------------------------------------------------------------------------------------------------------------
-----------------------------------------------+---------------------------------------------------------------------
--------------------------------------------------------------------------------------------------------------+------
------------ 
3 | 
n%2b0prKAebczfG13CmB%2fL170xxzjSK8k%2f19igSi%2f1c3uQLTXTYANJMky0qJd%2b9I2k8XWd1RMDad
U%2bPXFFnu2dIGF%2bP5ln0m0qtpKOiBgJNRjwzbOwD5WLljzRf3Zx8VEZYqclvNCxxMKgNzI5Oed0U9n6h%2
bWWvO4BDPQ2TCD7dH6i6msdHAkAqgoqMfpUcNYZUwyM4J0gp%2bBliskuemgFoqCOD%2fL5ovOI6kGCFmj
4NZLqWgfoZAqHjG5LsAW9ouWp | 
track_type=ActivityClick&display_context=UserHome2&rcpt_uid=350157709&parent_oid=750580&init_uid
=528039026&raised_activity=PhotoAdd&oid=6978324&raise_ts=2010-07-01 19:10:39.000 |  
4 | 
n%2b0prKAebczfG13CmB%2fL170xxzjSK8k%2f19igSi%2f1c3uQLTXTYANJMky0qJd%2b9I2k0CR4XbEOO8H
Km91kINM7PE3niq88y1dnxFEQhXZ7MzGRP27THsk7jlQLncOv7ZLHIK%2bhoRwFs3eeBoKpTk5VzrBKuu4p3l7
9X8R0QRb4g8yQ8vnvHCdXNT2M3SzLlcco40EG5uZ5AdKCCDW7nE5pXpSgspPBVj37LCMY6lZOFhl%2bNlUUa
QsFVt4EhstbNOoI | 
track_type=ActivityClick&display_context=UserHome2&rcpt_uid=356999567&parent_oid=-
1916564383&init_uid=32050898&raised_activity=BulletinAdd&oid=1&raise_ts=2010-06-27 22:23:00.000 
|  
 

Encrypted Data Queries 
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• JSON (JavaScript Object Notation) 

• Apache Logs 

• Encrypted Data 

• Word doc 

• PDF 

• HTML 

• Excel 

• PPT 

• XML 

• Sets of elements (Pack/Unpack) 

• Lucene indexes 

 

 

Interpretation of Multi-Structured Data 


